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Abstract

We generalize to the non-separable context a theorem of Levi
characterizing Baire analytic spaces. This allows us to prove a joint-
continuity result for non-separable normed groups, previously known
only in the separable context.

1 Introduction

This paper is inspired by Sandro Levi�s [Levi], similarly titled �On Baire cos-
mic spaces�, containing an Open Mapping Theorem (a result of the Direct
Baire Property given below) and a useful corollary on comparison of topolo-
gies; all these results are in the separable realm. Here we give non-separable
generalizations (see Main Theorem 1.6) and, as an illustration of their use-
fulness, Main Theorem 1.9 o¤ers a non-separable version of an Ellis-type
theorem (see [Ell1, Cor. 2], cf. [Bou1], [Bou2], and the more recent [SolSri])
with a �one-sided� continuity condition implying that a right-topological
group generated by a right-invariant metric (i.e. a normed group in the
terminology of §4) is a topological group. Unlike Ellis we do not assume
that the group is abelian, nor that it is locally compact; the non-separable
context requires some preservation of �-discreteness as a side-condition (see
below).
Given that the application in mind is metrizable, references to non-

separable descriptive theory remain, for transparency, almost exclusively in
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the metric realm, though we do comment on the regular Hausdor¤ context
in §5 (see Remark 5.4).

Levi�s work draws together two notions: BP �the Baire set property (i.e.
that a set is open modulo a meagre set, so �almost open�), and BS �the
Baire space property (i.e. that Baire�s theorem holds in the space). Below
we keep the distinction clear by using the terms �Baire property�and �Baire
space�. The connection between BP and BS is not altogether surprising, and
as we explain in Remark 4.5 the two are �almost�the same in a precise sense,
at least in the context of normed groups (cf. [Ost-S], where this closeness is
fully exploited).

We refer to [Eng] for general topological usage (though we prefer �meagre�
as a term). We say that a subspace S of a metric space X has a Souslin-
F(X) representation if there is a �determining�system hF (ijn)i := hF (ijn) :
i 2 NNi of sets in F(X) (the closed sets) with

S =
[

i2I

\
n2N

F (ijn); where I = NN

and ijn denotes (i1; :::; in): We will say that a topological space is classi-
cally analytic if it is the continuous image of a Polish space (Levi terms
these �Souslin�) and not necessarily metrizable, in distinction to an (ab-
solutely) analytic space, i.e. one that here is metrizable and is embeddable
as a Souslin-F set in its own metric completion; in particular, in a complete
metric space G�-subsets (being F��) are analytic. We call a Hausdor¤ space
almost analytic if it is analytic modulo a meagre set. Similarly, a space X 0 is
absolutely G�, or an absolute-G�, if X 0 is a G� in all spaces X containing X 0

as a subspace. (This is equivalent to complete metrizability in the narrowed
realm of metrizable spaces [Eng, Th. 4.3.24], and to topological/µCech com-
pleteness in the narrowed realm of completely regular spaces �[Eng, §3.9].)
So a metrizable absolute-G� is analytic; we use this fact in Lemma 6.2.
Levi�s results follow from the following routine observation.

Theorem 1.1 (On the Direct Baire Property, [Levi]). Let X be a
classically analytic space and Y Hausdor¤. Every continuous map f : X !
Y has the direct Baire property: the image of any open set in X has the
Baire property in Y:

The nub of the theorem is that, with X as above, continuity preserves
various analyticity properties such as that open, and likewise closed, sets
are taken to analytic sets, in brief: a continuous map is open-analytic and
closed-analytic in the terminology of [Han-74], and so preserves the Baire
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property. (See below in Remarks 1.5.3 for a reprise of this theme.) Levi
deduces the following characterization of Baire spaces in the category of
classically analytic spaces.

Theorem 1.2 (Levi�s Open Mapping Theorem, [Levi]). Let X be a
regular classically analytic space. Then X is a Baire space i¤ X = f(P ) for
some continuous map f on some Polish space P with the property that there
exists a subspace X 0 � X which is a dense metrizable absolute-G� such that
the restriction map f jP 0 : P 0 ! X 0 is open for P 0 = f�1(X 0).

The result may be regarded as implying an �inner regularity�property
(compare the capacitability property) of a classically analytic space X: if
X is a Baire space, then X contains a dense absolute-G� subspace, so a
Baire space. The existence of a dense completely metrizable subspace �
making X almost complete in the sense of Frolík ([Frol], but the term is due
to Michael [Mich91]) �is a result that implicitly goes back to Kuratowski
([Kur-1] IV.2 p. 88, because a classically analytic set has the Baire property
in the restricted sense �Cor. 1 p. 482). Generalizations of the latter re-
sult, including the existence of a restriction map that is a homeomorphism
between a G�-subset and a dense set, is given by Michael in [Mich86]; but
there the continuous map f requires stronger additional properties such as
openness on P (unless P is separable), which Levi�s result delivers.
Theorem 1.2 has a natural extension characterizing a Baire space (in the

same way) when it is almost analytic. Indeed, withX 0 as above, the spaceX
is almost complete and so almost analytic. On the other hand, ifX is a Baire
space and almost analytic, then by supressing a meagre F� and passing to
an absolutely G�-subspace, we may assume that X is a Baire space which
is analytic, so has the open mapping representation of the theorem, and
in particular is almost complete (for more background see [Ost-S]; cf. Cor.
1.8).
Since an analytic space is a continuous image, Theorem 1.2 may be

viewed as an �almost preservation�result for complete metrizability under
continuity in the spirit of the classical theorem of Hausdor¤ (resp. Vain-
stein) on the preservation of complete metrizability by open (resp. closed)
continuous mappings �see Remarks 1.11.4 at the end of this section for the
most recent improvements and the literature of preservation. We note that
Michael [Mich91, Prop. 6.5] shows that almost completeness is preserved by
demi-open maps (i.e. continuous maps under which inverse images of dense
open sets are dense). Theorem 1.2 has an interesting corollary on the com-
parison of re�nement topologies. For a discussion of re�nements see [Ost-S,
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§7.1] (for examples of completely metrizable and of analytic re�nements see
[Kech, Th. 13.6, Th. 25.18, Th. 25.19]).

Theorem 1.3 (Levi�s Comparison Theorem, [Levi]). For T ; T 0 two
topologies on a set X with (X; T 0) classically analytic (e.g. Polish) and T 0

re�ning T (i.e. T � T 0), if (X; T ) is a regular Baire space, then there is a
T -dense G(T )�-set on which T and T 0 agree.

We o¤er a generalization in Main Theorem 1.6 below to the broader cat-
egory of (absolutely) analytic spaces �be they separable or non-separable
metric spaces. We will need the following de�nitions (see below for com-
ments). Recall that a Hausdor¤ space X is paracompact ([Eng], Ch. 5) if
every open cover of X has a locally-�nite open re�nement, and further that
for an (indexed) family B := fBt : t 2 Tg:

(i) B is index-discrete in the space X (or just discrete when the index set
T is understood) if every point in X has a neighbourhood meeting the sets
Bt for at most one t 2 T;
(ii) B is �-discrete (abbreviated to �-d) if B =

S
n Bn where each set Bn is

discrete as in (i), and

(iii) B is a base for E if every member of E may be expressed as the union of
a subfamily of B. For T a topology (the family of all open sets) with B � T
a base for T , this reduces to B being simply a (topological) base.

De�nitions 1.4 ([Han-74], §3; cf. [Han-71] §3.1 and [Mich82] Def. 3.3).
1. Call f : X ! Y base-�-discrete (or co-�-discrete) if the image under
f of any discrete family in X has a �-discrete base in Y . We need two
re�nements that are more useful and arise in practice: call f : X ! Y an
analytic (resp. Baire) base-�-discrete map (henceforth A-�-d , resp. B-�-d
map) if in addition, for any discrete family E of analytic sets in X; the
family f(E) has a �-d base consisting of analytic sets (resp. sets with the
Baire property) in Y . We explain in §2 (Th. 2.6 and thereafter) why A-�-d
maps, though not previously isolated, are really the only base-�-discrete
maps needed in practice in analytic space theory.
2. ([Han-74], §2) An indexed family A := fAt : t 2 Tg is �-discretely
decomposable (�-d decomposable) if there are discrete families An := fAtn :
t 2 Tg such that At =

S
nAtn for each t: (The open family f(�r; r) : r 2 Rg

on the real line has a �-d base, but is not �-d decomposable �see [Hans-73b,
§3].)
3. ([Mich82] Def. 3.3) Call f : X ! Y index-�-discrete if the image under
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f of any discrete family E in X is �-d decomposable in Y: (Note f(E) is
regarded as indexed by E , so could be discrete without being index-discrete;
this explains the pre�x �index-�in the terminology here.) An index-�-discrete
function is A-�-d (analytic base-�-discrete): see Th. 2.6 below.

Remarks 1.5. Recall Bing�s Theorem ([Eng, Th. 4.4.8]) that a regular
space is metrizable i¤ it has a �-discrete base. In a separable space discrete
sets are at most countable. So all the notions above generalize various as-
pects of countability; in particular, in a separable metric setting all maps are
(Baire) base-�-discrete. We comment brie�y on their standing. (The paper
[Han-74] is the primary source for these.)
1. In (3) above f has a stronger property than base-�-discreteness. For a
proof see [Han-74] Prop. 3.7 (i); cf. [Mich82, Prop 4.3] shows that f with
closed �bres has (3) i¤ it is base-�-discrete and has �bres that are @1-
compact, i.e. separable (in the metric setting). The stronger property is
often easier to work with than Baire base-�-discreteness; in any case the
concepts are close, since for metric spaces and � an in�nite cardinal: X is a
base-�-discrete continuous image of �N i¤X is an index-�-discrete continu-
ous image of a closed subset of �N; both equivalent to analyticity ([Han-74]
Th. 4.1), cf. Prop. 2.9 below. (See [Han-92] Th. 4.2, or [Han-74] Th. 4.1. In
fact the natural continuous index-�-discrete representation of an analytic
set has separable �bres, for which see §2 below; for a study of �bre condi-
tions see [Han-98].)
2. Base-�-discrete continuous maps (in particular, Baire base-�-discrete and
index-�-discrete continuous maps) preserve analyticity ([Han-74] Cor. 4.2).
3. If X is metric and (absolutely) analytic and f : X ! Y is injective and
closed-analytic (or open-analytic), then f is base-�-discrete ([Han-74] Prop.
3.14). Base-�-discreteness is key to this paper just as open-analyticity is key
to the separable context of the Levi results above.
4. If B =

S
n2N Bn; with each Bn discrete, is a �-d base for the metrizable

space X and each f(Bn) is �-d decomposable, then f is index-�-discrete,
and so base-�-discrete ([Han-74] Prop. 3.9).
5. A discrete collection A = fAt : t 2 Tg comprising analytic sets has the
property that any subfamily has analytic union, i.e. is �completely additive
analytic�. It turns out that in an analytic space a disjoint (or a point-�nite)
collection A is completely additive analytic i¤ it is �-d decomposable (see
[KP] generalizing the disjoint case in [Han-71] Th. 2; see also [Fh]). By the
proof of Th. 2.6 the decompositions can be into analytic sets.

Main Theorem 1.6 (Generalized Levi Open Mapping Theorem �
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Non-separable case). Let X be an analytic space (more generally, para-
compact and K-analytic � as de�ned in §2). Then X is a Baire space i¤
X = f(P ) for some continuous, index-�-discrete map f on a completely
metrizable space P with the property that there exists a dense completely
metrizable G� subset X 0 of X such that the restriction f jP 0 : P 0 ! X 0 is an
open mapping, with P 0 = f�1(X 0); again a topologically complete subspace.

This is proved in §3. For related results on restriction maps of other
special maps, see Michael [Mich91] §7. (Compare also [Han-92], Th. 6.4 and
6.25.) As immediate corollaries one has:

Corollary 1.7 (Generalized Levi Comparison Theorem). If T ; T 0

are two topologies on a set X with (X; T ) a regular Baire space, and T 0

an absolutely analytic (e.g. completely metrizable) re�nement of T such
that every T 0-index-discrete collection is �-discretely decomposable under
T , then there is a T -dense G(T )�-set on which T and T 0 agree.

Proof. For f take the identity map from (X; T 0) to (X; T ); which is
continuous and index-�-discrete. �

Corollary 1.8 (Almost Completeness Theorem). X is almost analytic
and a Baire space i¤ X is almost complete.

Proof. If X contains a co-meagre analytic subspace A, then by Th. 1.6
A, being a Baire space, contains a dense completely metrizable subspace X 0

which is co-meagre in X. So X is almost complete. �

For a sharper characterization in the case of normed groups see [Ost-LB3,
Th. 2], cf. Th. 4.4.. Corollary 1.7 will enable us to prove (in §6) the au-
tomatic continuity result of Main Theorem 1.9 below for right-topological
groups with a right-invariant metric dR (the normed groups of §4). We write
dL(x; y) := dR(x

�1; y�1); which is left-invariant, and dS := maxfdR; dLg for
the symmetrized (�ambidextrous�) metric. The basic open sets under dS take
the form BR" (x) \ BL" (x); i.e. an intersection of balls of "-radius under dR
and dL centered at x; giving the join (coarsest common re�nement) of dR
and dL: Following [Ost-Joint], for P a topological property it is convenient
to say that the metric space (X; dR) is topologically symmetrized-P, or just
semi-P, if (X; dS) has property P: In particular (X; dR) is semi-complete if
(X; dS) is topologically complete. As dR and dL are isometric under inver-
sion, (X; dR) is semi-complete i¤ (X; dL) is.
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Main Theorem 1.9 (Semi-Completeness Theorem, cf. [Ost-Joint]).
For a normed group X, if (X; dR) is semi-complete and a Baire space,
and the continuous embedding map j : (X; dS) ! (X; dR) is Baire base-
�-discrete (e.g. index-�-discrete), in particular this is so if X is separable,
then the right and left uniformities of dR and dL coincide and so (X; dR) is
a topologically complete topological group.

The following result will be needed later in conjunction with Theorem 5.2.

Lemma 1.10. For a normed group X, if the continuous embedding map
j : (X; dS) ! (X; dR) is index-�-discrete (resp. base-�-discrete), then so
also is the inversion mapping from (X; dR) to (X; dR), i.e. i : x! x�1:

Proof. Suppose V is a family of sets that is discrete in (X; dR); then
V�1 := fV �1 : V 2 Vg is a family of sets that is discrete in (X; dL): As the
dS topology re�nes the dL topology, V�1 is discrete in (X; dS): Assuming
that j is index-�-discrete (resp. base-�-discrete), the family j(V�1) = V�1

is �-d decomposable (has a �-dbase) in (X; dR): So inversion maps V to a
family V�1 that is �-ddecomposable (has �-dbase) in (X; dR): �

Remarks 1.11. 1. Theorem 1.9 generalizes a classical result for abelian
locally compact groups due to Ellis [Ell1].
2. Remarks 1.5 noted that the �index-�-discreteness condition�imposed in
the theorem is a natural one from the perspective of the non-separable the-
ory of analytic sets, and the Lemma interprets this in terms of inversion,
compare point 4 below.
3. For separable spaces, where discrete families are countable and so the
embedding j above automatically preserves �-discreteness, the result here
was proved in [Ost-Joint] (to which we refer for the literature) in the form
that a semi-Polish, normed group X; Baire in the right norm-topology, is
a topologically-complete topological group. Rephrased in the language of
uniformities generated by the norm ([Kel, Ch. 6 Pb. O]), this says that a
normed group, Polish in the ambidextrous uniformity and Baire in either
of the right or left uniformities, has coincident right and left uniformities,
and so is a topological group. Key to its proof is that a continuous image
of a complete separable metric space is a classically analytic space. So the
�index �-discreteness condition�is exactly the condition that secures preser-
vation of analyticity. In the non-separable context continuity is not enough
to preserve analyticity, and an additional property is needed, involving �-d
as above: see [Han-98] Example 4.2 for a non-analytic metric space that is
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a one-to-one continuous image of �N for some uncountable cardinal � (so a
continuous image of a countable product of discrete, hence absolutely ana-
lytic, spaces of cardinal �).
4. Recent work by Holický and Pol [HP], in response to Ostrovsky�s in-
sights and based on [Mich86, esp. §6] (which itself goes back to [GM]),
connects preservation of (topological) completeness under continuous maps
between metric spaces to the classical notion of resolvable sets. (The latter
notion provides the natural generalization to Ostrovsky�s setting; see also
Holický [H] for non-metrizable spaces.) They �nd that a map f preserves
completeness if it �resolves countable discrete sets�, i.e. for every countable
metrically-discrete set C and open neighbourhood V of C there is L with
C � L � V such that f(L) is a resolvable set.
Consider the implications for a group X with right-invariant metric dR (see
above), when for f one takes j the identity embedding j : (X; dS)! (X; dR);

and C = fcn : n 2 Ng is a dS-discrete set (so that C and C�1 are
dR-discrete). To obtain the desired resolvability for j; it is necessary and
su¢ cient, for each C as above and each assignment r : N ! R+ with
rn ! 0; that there exist dR-resolvable sets Ln � BRrn(cn) \ BLrn(cn): Since
BLr (c) = fx : dR(c�1; x�1) < rg = fx : dR(c�1; y) < r and y = x�1g =
fy�1 : dR(c�1; y) < rg; this is yet another condition relating inversion to
the dR-topology, via the sets BRr (c

�1)�1.

2 Analyticity: upper semicontinuity and the
Baire property

This section enables some standard (separable) analyticity and category ar-
guments to be lifted to the non-separable context. The three results we need
are Hansell�s Characterization Theorem (Th. 2.1), yielding representation
of analytic sets in the form

S
j2�N H(j) with H upper semicontinuous and

compact-valued, Nikodym�s Theorem (Th. 2.2), implying their Baire prop-
erty, and the conclusion that analytic base-�-discrete maps (A-�-d maps,
for short) are the only ones that matter (compare Prop. 2.9).

We content ourselves mostly with a metric context, though a wider one
is feasible (consult [Han-92]). Recall that a metric space S is said to be
absolutely analytic, or just analytic, if it is Souslin-F(S�); i.e. is Souslin in its
(metric) completion S�. A Hausdor¤ space S is K-analytic if S =

S
i2I K(i)

for some upper-semicontinuous mapK from I to K(S); the compact subsets
of S: In a separable metric space, an absolutely analytic subset is K-analytic
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([Jay-Rog, Cor 2.4.3 plus Th. 2.5.3]). In a non-separable complete metric
space X; it is not possible to represent a Souslin-F(X) subset S of X as
a K-analytic set relative to I = NN. Various generalizations of countability
now enter the picture, as we now recall, referring to two survey papers: [St2]
and the more recent [Han-92].
Denoting by wt(X) the weight of the space X (i.e. the smallest cardi-

nality of a base for the topology), and replacing I = NN by J = �N for
� = wt(X); with basic open sets J(jjn) := fj0 2 J : j0jn = jjng; consider
sets S represented by the following extended �-Souslin operation (brie�y:
the extended Souslin operation)

S =
[

j2J
H(j); where H(j) :=

\
n2N

H(jjn);

applied to a determining system hH(jjn)i := hH(jjn) : j 2 �Ni of sets from
a family H subject to the requirement that:
(i) fH(jjn) : jjn 2 �ng is �-discrete for each n.
For H = F the corresponding extended Souslin-F sets reduce to the

�-Souslin sets of [Han-92]. (This slightly re�nes Hansell�s terminology, and
abandons Stone�s term ��-restricted Souslin�of [St2].) Say that the deter-
mining system is shrinking if
(ii) diamXH(jjn) < 2�n; so that H(j) is empty or single-valued, and so
compact.
With X above complete (e.g. X = S�) and for H = F(X); the mapping H :

J ! K(X) evidently yields a natural upper semi-continuous representation
of S. We refer to it below, in relation to the Analytic Cantor Theorem,
and also in Prop 2.9; there the fact that C := fj : H(j) 6= ;g is closed in
�N yields a natural representation of S as the image of C under a map h
de�ned by H(j) = fh(j)g: The map h is continuous and index-�-discrete
with countable �bres (by (i) above), as noted in Remarks 1.5.1.

Theorem 2.1 (Characterization of Analytic sets, [Han-73a]). In a
metric space X, the Souslin-F(X) subsets of X are precisely the sets S
represented by a shrinking determining system of closed sets through the
extended �-Souslin representation above with � = wt(X).

For other equivalent representations, including a weakening of �-discreteness
in X above to �-d relative to its union, as well as to �-d decompositions,
see [Hans-73b] and [Han-73a]. Thus, working relative to J , the correspond-
ing extended Souslin sets exhibit properties similar to the K-analytic sets
relative to I: In particular of interest here is:
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Theorem 2.2 (Nikodym Theorem for Analytic sets). In a metric
space S, analytic sets have the Baire property.

Proof. Since S \ F(S�) = F(S); the theorem follows immediately from
the de�nition of analytic sets as Souslin-F(S�) and from Nikodym�s classical
theorem ([Jay-Rog, §2.9], or [Kech, Th. 29.14, cf. Th. 21.6]) asserting that
the Baire property is preserved by the usual Souslin operation, with the
consequence that Souslin-F sets have the Baire property (since a closed set
di¤ers from its interior by a nowhere dense set). �

Using Hansell�s characterization theorem and again Nikodym�s classical
theorem, one also has the equally thematic result:

Theorem 2.3 (Nikodym Theorem for extended Souslin sets). In a
metric space, sets with a shrinking extended Souslin-F representation have
the Baire property.

Actually, this is a direct consequence of the following result, apparently
unrecorded in the literature, so for completeness and in view of its brevity
we include a proof (despite not needing it).

Theorem 2.4 (Nikodym Stability Theorem for the extended Souslin
operation). In a topological space, the extended Souslin operation applied
to a determining system of sets with the Baire property yields a set with the
Baire property.

Proof. One need only check that the classical �separable�proof given for
the usual Souslin operation in [Jay-Rog, Th. 2.9.2, pp. 43-4] continues to
hold mutatis mutandis for the choiceM of the family of sets with the Baire
property and N of the meagre subsets of the metric space. In particular,
we must interpret NN there as �N throughout, with �(N) denoting �nite
sequence with terms in �. With this our sole aim, assume the extended
Souslin operation above is applied to a determining system of sets hB(�jn)i
in M. So fB(�jn) : �jn 2 �ng is a �-d family for each n. By Banach�s
localization principle, or Category Theorem ([Oxt] Ch. 16, [Kel] Th. 6.35,
[Jay-Rog] p. 44-5, or [Kur-1] §10.III under the name Union Theorem), N is
closed under �-d unions, and hence so isM (open sets being closed under
arbitrary union). As the system hD(�jn)i is a re�nement of the hB(�jn)i
system, fD(�jn) : �jn 2 �ng is also �-d for each n, and so the unionS
fD(�jn; t) : t 2 �g is in M. (Note that the sets D(�jn) are de�ned as

�nite intersections of sets inM.) Each set N(�jn) := D(�jn)n
S
fD(�jn; t) :
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t 2 �g is in N , as N is closed under subset formation, and again the
family fN(�jn) : �jn 2 �ng is �-d for each n; as before by re�nement:
N(�jn) � D(�jn): Hence

L :=
[
fN(�) : � 2 �(N)g =

[
n2N

[
fN(�jn) : �jn 2 �ng

is in N , again by Banach�s Category Theorem. The remainder of the proof
in [Jay-Rog, Th. 2.9.2, pp. 43-4] now applies verbatim. �

A similar, but simpler, argument with M the Radon measurable sets
shows these to be stable under the extended Souslin operation (using mea-
sure completeness and local determination, for which see [Fre4, 412J, cf.
431A], and measurable envelopes [Fre2, 213L]).
Evidently, the standard separable category arguments may be also be ap-

plied to �-d decompositions of a set, in view of Banach�s Category Theorem,
just cited.
Finally, since H : J ! K(X) above is upper-semicontinuous (for X com-

plete and H = F), the following theorem, used in the separable context of
[Ost-AH, §2] and [Ost-LB3, Th. AC] continues to hold in the non-separable
context (by the same proof), which permits us to quote freely some of its
consequences in §4 in such a context.

Theorem 2.5 (Analytic Cantor Theorem). Let X be a Hausdor¤ space
and A = K(J); withK : J ! K(X) compact-valued and upper-semicontinuous.
If Fn is a decreasing sequence of (non-empty) closed sets in X such that
Fn \ K(J(j1; :::; jn)) 6= ;; for some j = (j1; :::) 2 J and each n; then
K(j) \

T
n Fn 6= ;:

Here, beyond upper-semicontinuity, we do not need properties related to
the notion of �-d possessed by the mapping H (for which see [HJR]).
We return to a discussion of analytic base-�-discrete maps, promised in

§1. Recall their de�nition requires in addition to base-�-discreteness that,
for any discrete family E of analytic sets in X; the family f(E) has a �-d
base consisting of sets with the Baire property. The remaining results in
this section are gleaned from a close reading of the main results in [Han-74]
in respect of base-�-discrete maps, i.e. Hansell�s sequence of results 3.6-
3.10 and Th. 4.1, all of which derive the required base-�-discrete property
by arguments that combine �-d decompositions with discrete collections of
singletons. We shall see below that all these results may be re�ned to the
A-�-d context.
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Theorem 2.6. An index-�-discrete function is A-�-d (Analytic base-�-
discrete).

Proof. Suppose that an indexed family A := fAt : t 2 Tg has a �-d de-
composition usin /g discrete families An := fAtn : t 2 Tg; with At =

S
nAtn

for each t; and all the sets At have the Baire property (so in particular,
if the sets are analytic �by Nikodym�s Theorem above (Th.2.2)). Putting
~Atn := At \ �Atn and eAn := f ~Atn : t 2 Tg; which is discrete, we obtain a
B-�-d decomposition for A (or an A-�-d one in the case of an analytic �-d
decomposition), and so a fortiori a B-�-d base for A (or an A-�-d one).
Thus, if E is a discrete family of analytic sets, and f is index-�-discrete,

then A := f(E), which comprises analytic sets (see Remark 1.5.2 above),
has for its �-d base the family

S
n
eAn of analytic sets, so with the Baire

property, where eAn are as just given above. �
Remark 2.7. The a-�-d maps are closed under composition (cf. [Han-74]
Prop.3.4); also by the construction in Th. 2.6 above, the conclusions of
[Han-74] Prop. 3.7, Cor. 3.8 and 3.9 yield A-�-d bases for f(E), when E
comprises analytic sets. In similar vein are the next two re�nements of
results due to Hansell �together verifying the adequacy of A-�-d maps for
analytic-sets theory.

Proposition 2.8 ([Han-74] Prop. 3.10). A closed surjective map onto a
metrizable space is A-�-d.

Proof. Since singletons are analytic, a base that is a discrete family of
singletons is an A-�-d base. This combined with the construction in Th. 2.6
above re�nes the argument for Prop. 3.10 proving that a closed surjective
map onto a metrizable space is an A-�-d map. �

Proposition 2.9 ([Han-74] Th. 4.1). Analytic metric spaces are the A-�-d
continuous images of �N.

Proof. By Remark 1.5.2 again, there is only one direction to consider.
So let S be analytic; we re�ne Hansell�s argument. Observe �rst that the
argument in for Prop. 3.5(ii) proves more: if Y is �-discrete, then any map
into Y is A-�-d, (as in Th. 2.6 above). Next, using the notation H for
analytic sets established above (in a complete context, with H = F); work
in the closed subspace C � �N comprising those j withH(j) 6= ;; and de�ne,
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as above, the (continuous) map h on C via H(j) = fh(j)g: Observe that h
takes, for each n; the discrete family of basic open sets J(jjn); relativized to
C; to the �-d family of analytic sets h(J(jjn)\C); and so h is an A-�-d map
(by [Han-74] Cor. 3.9, reported in Remark 1.5.4 above). Stone�s canonical
retraction r of �N onto any closed subspace as applied to the closed subspace
C has �-discrete range on �NnC and is the identity homeomorphism on C
�for details see [Eng-ret] (where r is also shown to be a closed map). So,
in view of the preceding two observations, r is an A-�-d map. Hence h � r is
A-�-d, since composition of A-�-d maps is A-�-d and provides the required
characterization. �

3 Generalized Levi Theorem

The generalized Levi characterization of Baire spaces in Main Theorem 1.6
is a consequence of the following result, which we also apply in §6.

Lemma 3.1 (Generalized Levi Lemma). If f : X ! Y is surjective, con-
tinuous and Baire base-�-discrete (in particular, index-�-discrete) from X

metric and analytic to Y a paracompact space, then there is a dense metriz-
able G�-subspace Y 0 � Y such that for X 0 := f�1(Y 0) the restriction map
f jX 0 : X 0 ! Y 0 is open.

Proof. Let A =
S
nAn = fAt : t 2 Tg be an open base for X with An

= fAtn : t 2 Tng discrete. Then Et := f(At) is analytic (see Remarks 1.5.2),
so has the Baire property (Th. 2.2, Nikodym�s Theorem for analytic sets).
Let En = ff(A) : A 2 Ang and let Bn be a �-d base for En comprising sets
witht the Baire property. Put Bn =

S
m Bnm with each Bnm discrete. Thus

for each t 2 T and Et 2 En one has

Et =
[

m

[
fB : B � Et and B 2 Bnmg:

Put B =
S
nm Bnm. For each B 2 B pick an open set UB and meagre sets

NB and MB such that

B = (UBnNB) [MB

with MB disjoint from MB and with NB � UB: As fB : B 2 Bnmg is
discrete, the set

M :=
[

mn

[
fMB : B 2 Bnmg

is meagre. By paracompactness of Y (cf. [Eng, Th. 5.1.18]), since fUBnNB :
B 2 Bnmg is discrete, for B 2 Bnm we may select open sets WB with
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UBnNB � WB with fWB : B 2 Bnmg discrete. Without loss of generality
WB � UB (otherwise replaceWB byWB \UB): So UBnNB � WB � UB and
hence UBnNB = WBnNB: Then

N :=
[

n;m

[
fWB \NB : B 2 Bnmg

is also meagre. Now put Y 0 := Y n(M [ N) and W :=
S
m;n

S
fWB : B 2

Bnmg; which is open. Then, for B 2 Bnm one has

B \ Y 0 = WB \ Y 0;

so that B is open relative to Y 0 and also fY 0 \WB : B 2 Bnmg is open and
discrete in Y 0: Now for t 2 T; since Et 2 En for some n and Bn is a base for
En;

Et \ Y 0 =
[

n;m

[
fB \ Y 0 : B � Et & B 2 Bnmg

=
[

n;m

[
fWB \ Y 0 : B � Et & B 2 Bnmg

is open in Y 0.
For G � X open, since A is a (topological) base, we may write

G :=
[

n
AGn with AGn := fA : A � G & A 2 Ang:

Then

f(G) :=
[

n
f(AGn ) with f(AGn ) := fE : E = f(A) & A � G & A 2 Ang:

So for X 0 := f�1(Y 0)

f(G \X 0) = Y 0 \
[

n;m
WG
nm

with WG
nm : = fWB : B � f(A) & B 2 Bnm & A � G & A 2 Ang;

which is open in Y 0:
Since f is continuous and Wnm := fWB : B 2 Bnmg is discrete for each

m;n, this also shows that the family
S
n;mfY 0 \ WB : B 2 Bnmg is a �-

d base for Y 0: Being paracompact, Y is regular ([Eng] Th. 5.1.5), so the
subspace Y 0 is regular ([Eng] Th. 2.1.6), and so Y 0 is metrizable by Bing�s
Characterization Theorem (see [Eng] Th. 4.4.8, cf. Remarks 1.5). Finally,
by replacing the meagre sets M;N by larger sets that are unions of closed
nowhere dense sets, we obtain in place of Y 0 a smaller, metrizable, dense
G�-subspace. �
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Remarks 3.2. 1. For Lemma 3.1 we replaced each system fUB : B 2 Bnmg
to obtain discrete systems fWB : B 2 Bnmg to reduce the setsNB to the sets
NB \WB and only then did we take unions. This circumvents the suggested
approach (in a parenthetical remark) to the proof of Th. 6.4(c) in [Han-92]
(by way of representing a Baire set as E = (GEnPE) [ QE with PE � E

(sic) for GE open and PE; QE meagre).
2. Given an arbitrary base B one may replace each B 2 B with a Baire
envelope B+ such that B � B+ � �B: Then B+ =

S
n B+n is �-d and Et �

E+t :=
S
n

S
fB+ : B � Et and B 2 Bng; with E+t nEt meagre. However, it

is not clear that the union of these meagre sets is meagre.

Proof of Main Theorem 1.6 (Non-separable Levi OpenMapping
Theorem). Let X be analytic of weight �: Then for some closed subset P
of �N there is a continuous index-�-discrete-map f : P ! X: Form P 0

and X 0 analogously to X 0 and Y 0 in the preceding lemma. As X is a Baire
space and X 0 is co-meagre, without loss of generality X 0 is a dense G� and
is metrizable. Also P 0 is a G� subspace of the complete space �N; hence
is also topologically complete. So P 0 has the desired properties. As X 0 is
metrizable, the result now follows from Hausdor¤�s Theorem that the image
under an open continuous mapping of the completely metrizable space P 0

onto a metrizable space X 0 is also completely metrizable (for a proof see
e.g. [Anc], or for a recent account e.g. [HP]).

For the converse, as X 0 is metrizable, the result again follows from Haus-
dor¤�s Theorem. Thus X 0 is completely metrizable. But its complement in
X is meagre. So X is a Baire space �in fact an almost complete space. �

4 Normed group preliminaries

We recall the de�nition of a normed group from [BOst-N] and cite from
from [Ost-LB3] four results that we need in the next two sections. The �rst
(Th. 4.3) is quite general, but we need to observe here that in view of §2 the
other three (Ths. 4.4, 4.6, 4.8) continue to hold in the new non-separable
context here.

De�nition 4.1. For T an algebraic group (i.e. with no topology) with
neutral element e, say that jj � jj : T ! R+ is a group-norm ([BOst-N]) if
the following properties hold:
(i) Subadditivity (Triangle inequality): jjstjj � jjsjj+ jjtjj;
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(ii) Positivity: jjtjj > 0 for t 6= e and jjejj = 0;
(iii) Inversion (Symmetry): jjt�1jj = jjtjj:

Remarks 4.2. 1. The group-norm generates a right and a left norm topol-
ogy (equivalently, right and left uniformity �cf. [Kel, Ch. 6 Pr. O]) via the
right-invariant and left-invariant metrics dTR(s; t) := jjst�1jj and dTL(s; t) :=
jjs�1tjj = dTR(s�1; t�1):We omit the superscript if context allows and identify
the two topologies by reference to the metric. Since dL(t; e) = dL(e; t�1) =
dR(e; t); convergence at e is identical under either topology. Evidently (T; dR)
is homeomorphic with (T; dL) under inversion. As a result topological prop-
erties (e.g. density character) of the two norm topologies dR; dL are in fact
norm properties, although properties of a subset of T (e.g. Baire property)
may depend on the choice of norm topology. Preference of dR over dL is
motivated by the right-invariance of the supremum metric on the space of
bounded homeomorphisms �see [Ost-S]; in the absence of a quali�er, the
�right�norm topology is to be understood.
2. Under either norm topology, there is continuity of operations at e: At
further distances the topology may force the group operations to be in-
creasingly �less�continuous.
3. Note that in the right norm-topology the right shift �t(s) := st is a
uniformly continuous homeomorphism, since dR(sy; ty) = dR(s; t); thus dR
makes T a right-topological group.
4. Under the dR topology, Br(x) = ft : dR(t; x) < rg = Br(eT )x:
5. If dT is a one-sidedly invariant metric on T , then jjtjj := dT (t; eT ) is a
norm.

Notation. We use the subscripts R;L; S as in xn !R x etc. to indicate
convergence in the corresponding metrics dR; dL; dS derived from the norm
(so that e.g. dR(x; y) := jjxy�1jj �see §1). Note that a metrizable topological
group is a normed group, by the Birkho¤-Kakutani Theorem ([Bir], [Kak];
in fact this is a normability theorem for certain right-topological groups �
see [Ost-LB3], or [Ost-S]).

Theorem 4.3 (Equivalence Theorem, [BOst-N, Th. 3.4]). A normed
group X is a topological group under the right (resp. left) norm-topology i¤
each conjugacy


g(x) := gxg
�1

is right-to-right (resp. left-to-left) continuous at x = eX (and so every-



Analytic Baire Spaces 17

where), i.e. for zn !R eX and any g;

gzng
�1 !R eX :

Equivalently, it is a topological group i¤ left/right-shifts are continuous for
the right/left norm topology, or i¤ the two norm topologies are themselves
equivalent, i.e. the left and right uniformities generated by the norm coin-
cide.

The following results were proved in [Ost-LB3] for classically analytic
spaces. Their proofs continue to hold for the more general non-separable
de�nition of analytic space given and reviewed in §2, since those proofs in
fact rely only on the Analytic Cantor Theorem as stated in Th. 2.5 above,
and �-d decomposition.

Theorem 4.4 ([Ost-LB3, Th. 1]). In a normed group X under dR; if X
contains a non-meagre analytic set, then X is a Baire space.

Remark 4.5. In the present normed-group context, in an almost-complete
space (cf. §1), �Baire set�as �set with the Baire property�and �Baire space�
are almost-synonyms in the sense that: for B non-meagre, B has the Baire
property i¤B is a Baire space i¤B is almost-complete (cf. [Ost-S, Th. 7.4]).

Below �quasi all�means �all except for a meagre set of exceptions�.

Theorem 4.6 (Analytic Shift Theorem, [Ost-LB3, Th. 3]). In a normed
group under the topology dR, with zn ! eX and A analytic and non-meagre:
for a non-meagre set of a 2 A with co-meagre Baire envelope, there is an
in�nite set Ma and points an 2 A converging to a such that

faa�1m zmam : m 2Mag � A:

In particular, if the normed group is topological, for quasi all a 2 A, there
is an in�nite set Ma such that

fazm : m 2Mag � A:

Remark 4.7. When zn ! eX one says that zn is a null sequence. Note
that aa�1m zmam above also converges under dR to a as

dR(aa
�1
m zmam; a) = jjaa�1m zmama�1jj � jjaa�1m jj+ jjzmjj+ jjama�1jj:

The theorem uses shifted-conjugacies to embed a subsequence of the null
sequence into A; it is natural, borrowing from [Par], to term this a �shift-
compactness��see [Ost-LB3] for background and connections with allied
notions of generic automorphisms.
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Theorem 4.8 (Analytic Squared-Pettis-Theorem, [BOst-N, Th. 5.8]
). For X a normed group, if A is analytic and non-meagre under dR, then
eX is an interior point of (AA�1)2:

5 Non-separable automatic continuity of ho-
momorphisms

In the proof of the Semi-Completeness Theorem (Main Theorem 1.9) we
will need to know that the inverse of a continuous bijective homomorphism
is continuous. In the separable case this follows by noting that the graph
of the homomorphism is closed and, as a consequence of the Souslin-graph
theorem, the inverse is a Baire homomorphism (meaning that preimages of
open sets have the Baire property), and hence continuous. However, in the
non-separable case the paradigm falls foul of the technical requirement for
�-discreteness. We will employ a modi�ed approach based on the following.

Theorem 5.1 (Open Homomorphism Theorem). For normed groups
X; Y with X analytic and Y a Baire space, let f : X ! Y be a surjective,
continuous homomorphism, which is base-�-discrete. Then f is open. So if
also X = Y and f is bijective, then f�1 is continuous.

Proof. Suppose that B and A are arbitrary open balls around eX with
B4 � A: Let D be a dense set in X (e.g. X itself). Now U = fBd : d 2 Dg
is an open cover of X: (Indeed, if x 2 X and d 2 D \ Bx; then x 2 Bd;
by symmetry.) Let V be a �-d open re�nement of U , and say V =

S
n Vn;

with each Vn discrete. Then, as X =
S
n(
S
fV : V 2 Vng); we have Y =S

n(
S
ff(V ) : V 2 Vng): As f is base-�-discrete each Wn := f(Vn) =

ff(V ) : V 2 Vng has a �-d base Bn; write Bn :=
S
m Bnm with each Bnm

discrete. So for each V 2 Vn one has f(V ) :=
S
mfB 2 Bnm : B � f(V )g

and so

Y =
[

nm
fB 2 Bnm : B � f(V ) for some V 2 Vng:

As Y is non-meagre, there are n;m 2 N; V 2 Vn and B 2 Bnm such that
B � f(V ) and B is non-meagre; for otherwise, since Bnm is discrete, by
Banach�s Category Theorem fB 2 Bnm : B � f(V ) for some V 2 Vng is
meagre implying the contradiction that also Y is meagre. Pick suchm;n and
B and V such that B � f(V ) � f(Bd) Now V � Bd for some d 2 D; as Vn
re�nes U , and so B � f(V ) � f(Bd) = f(B)f(d) is non-meagre. So f(B) is
non-meagre and analytic (as B is analytic). By the Squared Pettis Theorem
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(Th. 4.8), (f(B)(f(B))�1)2 = f(B)f(B)�1f(B)f(B)�1 = f(BB�1BB�1) is
a neighbourhood of eY contained in f(A): �

The following corollary will be used together with the Lemma 1.10.

Theorem 5.2 (Continuous Inverse Theorem). If under dR the normed
group X is an analytic Baire space and the inversion map i : x ! x�1 is
�-discrete preserving (takes discrete families to �-discrete families), then
the inverse of any continuous conjugacy 
x(�) is also continuous.

Proof. If fVt : t 2 Tg is �-d, then for any x so is fVtx�1 : t 2 Tg; as right
shifts are homeomorphisms. Applying our assumption about the inversion
map, for any x the family fxV �1t : t 2 Tg is �-d, hence fxV �1t x�1 : t 2 Tg is
�-discrete, and so again fxVtx�1 : t 2 Tg is �-d. This means 
x is continuous
is index-�-discrete. By the preceding theorem (Th. 5.1), if 
x is continuous
then its inverse is also continuous. �

With some minor amendments and from somewhat di¤erent hypothe-
ses, the same proof as in the Open Homomorphism Theorem (Th. 5.1)
demonstrates the following generalization of a separable result (given in
[BOst-N] Th. 11.11), but unfortunately without any prospect for achieving
the Baire property (see Remark 5.4 below). Here again the assumed dis-
creteness preservation is ful�lled in the realm of separable spaces. We give
the proof for the sake of comparison and because of its a¢ nity with a re-
sult due to Noll [N, Th. 1] concerning topological groups (not necessarily
metrizable), in which the map f has the property that f�1(U) is analytic
for each open F�-set U . In our metric setting, when preimages under the
homomorphism f of open sets are analytic, f is Baire by Nikodym�s The-
orem and, since f�1(A) is a disjoint and completely additive analytic for
A discrete, the �-d decomposability condition given below is satis�ed by
Hansell�s result [Han-71] Th. 2 cited in Remarks 1.5.5. Noll shows the �-d
decomposability condition below is satis�ed when X is a topological group
that is topologically complete (using the [Fh] generalization of Hansell�s
result and of [KP] �cf. again Remarks 1.5.5).

Theorem 5.3 (Baire Homomorphism Theorem). For normed groups
X; Y with X analytic, a surjective Baire homomorphism f : X ! Y is
continuous provided f�1(A) is �-discretely decomposable for each �-discrete
family A in Y:

Proof.We proceed as above but now in Y . For " > 0; with B = B"=4(eY )
open and D any dense set in Y choose ad with f(ad) = d: Put T := f�1(B);
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which has the Baire property (as f is Baire). As Y is metrizable, the open
cover fBd : d 2 Dg has a �-d re�nement A =

S
nAn with An := fAtn :

t 2 Tng discrete. For each n; by assumption, we may write ff�1(Atn) : t 2
Tng =

S
nmfBtnm : t 2 Tng with fBtnm : t 2 Tng discrete in X for each m

and n: Now

X = f�1(Y ) =
[

n
ff�1(Atn) : t 2 Tng =

[
nm
fBtnm : t 2 Tng:

As X is a Baire space, there are n;m such that
S
fBtnm : t 2 Tng is

non-meagre. Again by Banach�s Category Theorem, and since fBtnm : t 2
Tng is discrete, there is t with Btnm non-meagre. But Btnm � f�1(Atn) �
f�1(Bd) = Tad for some d 2 D; as A re�nes fBd : d 2 Dg: Thus Tad and
so T is non-meagre, as the right shift �ad is a homeomorphism. But T has
the Baire property and X is analytic, so T contains a non-meagre analytic
subset. By the Squared Pettis Theorem (Th. 4.8) (TT�1)2 contains a ball
B�(eX): Then

B�(eX) � f�1[(B"=4)4] = f�1[B"(eY )];

proving continuity at eX : �

Remark 5.4. In the separable case, by demanding that the graph � of a
homomorphism be Souslin-F(X�Y ) one achieves the Baire property of sets
f�1(U); for U open in Y; by projection parallel to the Y -axis of �\(X�U);
provided that Y is a K-analytic space. For Y absolutely analytic, one has
an extended Souslin representation, and hence a representation of Y as
an upper-semicontinuous image of some product space �N. But the proof of
the projection theorem in [Jay-Rog, Ths.2.6.5 and 2.6.6] now yields that the
projection of a Souslin-F(X�Y ) set has only a Souslin-F(X) representation
relative to �N, without guaranteeing the �-discreteness condition. In the
non-separable context the Baire property can be generated by a projection
theorem, provided one has both that the graph is absolutely analytic and
that the relevant projection, namely (x; f(x)) ! x, is base-�-discrete (cf.
[Han-92] Th. 4.6; [Han-74] §6, [Han-71] §3.5).

6 From normed to topological groups

In this section the generalized Levi result in Cor. 1.7 is the key ingredient;
we will use it and results of earlier sections to prove the Semi-Completeness
Theorem (Main Theorem 1.9). The proof layout (preparatory lemmas fol-
lowed by proof) and strategy are the same as in [Ost-Joint], but, as some
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of the details di¤er, it is convenient to repeat the short common part (most
of the proof of Lemma 6.2).

Lemma 6.1. For a normed group X; if (X; dS) is topologically complete
and the continuous embedding map j : (X; dS) ! (X; dR) is Baire base-�-
discrete (e.g. A-�-d, in particular index-�-discrete), then there is a dense
absolute-G� subset Y 0 in (X; dR) such that the restriction map j : (Y 0; dS)!
(Y 0; dR) is open, and so all the three topological spaces (Y 0; dS) and (Y 0; dR)
and (Y 0; dS) are homeomorphic (and topologically complete).

Proof. Take X = (X; dS) which is metric and analytic and Y = (X; dR)
which is paracompact, then j : X ! Y is continuous, surjective and Baire
base-�-discrete. By Lemma 3.1, there is a dense G�-subspace Y 0 of (X; dR)
such that jjY 0 is an open mapping from (Y 0; dS) to (Y 0; dR): Now j�1(Y 0) is
a G�-subspace of (X; dS); so it follows that (Y 0; dS) is topologically complete,
so an absolute-G�. So jjY 0 embeds Y 0 as a subset of (X; dS) homeomorphi-
cally into Y 0 as an absolute-G� subset of (X; dR): Since xn !S x i¤ xn !R x

and xn !L x, all three topologies on Y 0 agree. �

Lemma 6.2. If in the setting of Lemma 6.1 the three topologies dR; dL; dS
agree on a dense absolutely-G� set Y of (X; dR); then for any � 2 Y the
conjugacy 
� (x) := �x�

�1 is continuous.

Proof. We work in (X; dR) which is thus analytic (as a base-�-discrete
continuous image �Remarks 1.5.2). Let � 2 Y: We will �rst show that the
conjugacy x ! ��1x� is continuous in X at e; and then deduce that its
inverse x! �x��1 is continuous. So let zn ! e be any null sequence in X.
Fix " > 0; then T := Y \ BL" (�) is analytic and non-meagre, since X is a
Baire space (and Y \ BL" (�) is dR-open in Y with Y an absolute G�). By
the Analytic Shift Theorem (Th. 4.8), there are t 2 T and tn in T with tn
converging to t (in dR) and an in�niteMt such that ftt�1m zmtm : m 2Mtg �
T: Since the three topologies agree on Y and the subsequence tt�1m zmtm of
points of Y converges to t in Y under dR (see the Remark 4.7), the same
is true under dL: Using the identity dL(tt�1m zmtm; t) = dL(t

�1
m zmtm; e) =

dL(zmtm; tm); we note that

jjt�1zmtjj = dL(t; zmt) � dL(t; tm) + dL(tm; zmtm) + dL(zmtm; zmt)
� dL(t; tm) + dL(tt

�1
m zmtm; t) + dL(tm; t)! 0;
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as m ! 1 through Mt. So dL(t; zmt) < " for large enough m 2 Mt. Then
for such m, as dL(� ; t) < ";

jj��1zm� jj = dL(zm� ; �) � dL(zm� ; zmt) + dL(zmt; t) + dL(t; �)
� dL(� ; t) + dL(t; zmt) + dL(t; �) � 3":

Thus there are arbitrarily large m with jj��1zm� jj � 3": Inductively, taking
successively " = 1=n and k(n) > k(n�1) to be such that jj��1zk(n)� jj � 3=n;
one has jj��1zk(n)� jj ! 0. By the weak continuity criterion (Lemma 3.5 of
[BOst-N], p. 37), 
(x) := ��1x� is continuous. Hence, by Lemma 1.10 and
Th. 5.2, 
�1(x) is also continuous. �

Proof of Main Theorem 1.9 (Semi-Completeness Theorem). Un-
der dR; the set Z� := fx : 
x is continuousg is a closed subsemigroup
of X ([BOst-N], Prop. 3.43, but using the Open Homomorphism Theo-
rem, Th. 5.1 in place of the Souslin Graph Theorem). So as Y is dense,
X =clRY � Z�; i.e. 
x is continuous for all x; and so (X; dR) is a topolog-
ical group, by Th. 4.3. So xn !R x i¤ x�1n !R x

�1 i¤ xn !L x i¤ xn !S x:

So (X; dR) is homeomorphic to (X; dS): Hence the topological group (X; dR)
is topologically complete, being homeomorphic to (X; dS). �
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